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ABSTRACT

Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS)

has been proposed as an alternative to the Glob_ Positioning System (GPS) for supporting the

Earth Observing System 0EOS) mission. This paper presents the results of EOS navigation

performance evaluations with respect to TONS-based orbit, time, and frequency determination

(OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service

to derive one-way Doppler tracking data for OD/FD support (TONS-I); the other employs an

unscheduled navigation beacon service (proposed for Advanced TDRSS (ATDRSS)) to obtain

pseudorange and Doppler data for OD/TD/FD support (TONS-ID. Key objectives of the analysis

were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking

geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance

predictions are presented based on covariance and simulation analyses. EOS navigation scenarios

and the contributions of principal error sources impacting performance are also described. The

results indicate that a TONS mode can be configured to meet current and proposed EOS position

accuracy requirements of 100 and 50 meters (3a), respectively, as well as support onboard time

maintenance to an accuracy of 1-2 psec or better.

" Thiswork was performedfortheNationalAeronauticsand SpaceAdministration0qASA)/GoddardSpace

FlightCenter(GSFC),Greenbelt,ME),undercontractNAS 5-31500.
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1.0 INTRODUC_ON

The Earth Observing System (EOS) mission will support a multitude of science instruments on polar orbiting

platforms over a 15-year period. In the current baseline program the approved set of EOS instruments will be

distributed between two large platforms, each planned for a nominal 5-year design life. To achieve the required

15-year mission lifetime a total of six spacecraft would be launched into Sun-synchronous, high inclination orbits at

30-month intervals via expendable launch vehicles (TITAN-IV class).[ 1]

To support EOS navigation, science data annotation and other requirements the platforms are specified to have the

capability for onboard estimation of orbit data and to provide an accurate time reference. The most stringent orbit

determination accuracy requirement for operational phase mission support is llX)m (30) with a goal of 50m (30).[2]

This is a derived requirement for support of navigation base attitude determination (36 sec per axis).[2] The EOS

platform time reference is specified to be accurate within 10 lasec relative to UTC.[2] Use of the Global Positioning

System (GPS) signals for orbit ataA time determination (OD/TD) is the current baseline for providing primary EOS

navigation support.J3]

As a backup to GPS navigation, the EOS platform is also specified to have the capability to accept ground-derived

orbit data based on TDRSS coherent tracking (2-way range and Doppler-based solutions) or noncoherent tracking

(1-way return link Doppler-based solutions). A TDRSS Onboard Navigation System (TONS) under development by

the Goddard Space Hight Center (GSFC) has also been proposed as an alternative to GPS for primary EOS navigation

support in either of two configurations, TONS-I or TONS-II.

TONS-I can be implemented with the present TDRSS configuration by using one-way Doppler data derived from

scheduled forward link S-band Single Access (SSA) or Multiple Access (MA) services to support onboard orbit and

frequency determination (OD/FD). The Extreme Ultraviolet Explorer/Explorer Platform (EUVE/EP) mission (1991)

will provide the initial TONS-I demonstration.J4,5] A TONS-I user requires a Doppler extractor in the second

generation TDRSS user transponder, a stable reference frequency source, such as the Ultrastable Oscillator COSt)

on EUVE/EP [4], and navigation processing software. Figure 1 describes the tracking configuration for supporting

EOS platforms via TONS-I. Although TONS-I does not support user time determination (TD), the TDRSS-based

User Spacecraft Clock Calibration System (USCCS) to be used for the Gamma Ray Observatory (GRO) mission can

provide a time update capability of ~1 tasec.[6] In addition, precise FD available via TONS-I could support the

estimation of clock drift corrections to preserve the time accuracy and significantly extend the interval between

required USCCS operations.

TONS-II is a proposed future capability which would enable onboard orbit, time and frequency determination

(ODfrD/FD) by processing one-way Doppler and pseudorange data derived from _nschedole_ forward link beacon

signals transmitted continuously (see Figure 1). This requires some enhancements to TDRSS to generate the beacon

signal and some user enhancements over TONS-I capability to process it (pseudonoise (PN) code agility and

pseudorange extractor in the transponder and associated navigation software for pseudorange processing). A

demonstration capability may be available with activation of the Second TDRSS Ground Terminal (STGT) [7], launch

of additional TDRS satellites, and dedicated use of one or two MA forward links for the beacon signal. A TONS-II

operational capability is being considered for implementation with the advent of Advanced TDRSS (ATDRSS) in the

late 1990's.[8]
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Figure 1: Overview of User Navigation Via TONS
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Previous predictions of navigation performance for future TDRSS/ATDRSS users (e.g., space station and polar

platform) indicate that OD/TD accuracies in the range of 20-55 m (3a) and a 0.3-0.5 lasec (36) may be achieved.J9]

Because of this potential navigation performance capability and the weight/cost benefits of a TONS implementation,

the EOS Project initiated a GPS/TONS Trade Study to support a possible recommendation relative to EOS onboard

navigation alternatives. This paper presents the results of EOS navigation performance evaluations based on TONS

which were developed as inputs to the Trade Study.J10] The analysis of TONS-I and TONS-II capabilities to support

EOS navigation requirements also addresses potential performance sensitivities such as: suboptimal tracking geometry,

contact scheduling/selection, drag solution capability, and selected modeling/navigation algorithm parameters. The

following sections present the performance evaluation approach OD accuracy results, TD/FD performance using

TONS and the analysis conclusions.

2.0 EOS NAVIGATION PERFORMANCE EVALUATION

The EOS navigation task is to estimate optimal values of the spacecraft trajectory parameters and other selected

parameters used in modeling the spacecraft dynamics (e.g., drag) and TDRSS/ATDRSS tracking measurements (e.g.,

USO bias). With TONS-I, the navigation subsystem would estimate a minimum of seven parameters: three position,

three velocity and reference oscillator (USO) bias. With TONS-II at least one additional parameter, user clock bias,

would be estimated. Due to inherent inaccuracies in the dynamic and measurement models employed, uncertainties

in assumed parameters, and measurement noise, errors will arise in the estimated set of parameters.

To evaluate EOS navigation performance in both TONS modes, eovariance analysis techniques were used, and

additionally, simulation runs were made for particular cases. Covariance analysis provides a statistical measure (16

estimate) of the accuracy in orbit, time, and/or frequency determination computed as a function of assumed error

contributor statistics, the tracking geometry and contact distribution, and time from a given epoch. Simulation

analysis provides a time profile of EOS navigation errors computed by differencing parameters calculated from

appropriate truth models with corresponding estimated parameters based on simulated TDRSS tracking data and a

suitable emulation of user navigation processing software. The following two subsections describe the specific

tracking configurations and scenarios assumed for the covariance and simulation analyses.

2.1 TRACKING CONFIGURATION

The assumed TDRSS/ATDRSS tracking configuration includes two active spacecraft located in circular, 2 ° inclined

geosynchronous orbits stationed nominally at 41°W and 171°W. The EOS platform is assumed to be in a 705 km,

98.2 ° (Sun-synchronous) orbit with ascending node passage set at 1:30 PM (GMT) on the epoch date: I December

1997. Onboard tracking data is assumed to be acquired from TDRS forward link transmissions via scheduled service

(one-way Doppler with TONS-I) or continuously broadcast navigation beacon signals (pseudorange and one-way

Doppler with TONS-II).

2.2 TRACKING SCENARIOS

If no constraints on EOS antenna pointing or other mission operations are assumed, tracking contacts could be

selected within time intervals defined by TDRS/ATDRS line-of-sight visibility and geometrical considerations. The
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latterimpliessatelliteselection(41°Wor 171°W) to achieve the highest change in Doppler during a tracking pass.

This corresponds to choosing the TDRS/ATDRS with the highest angle (0) between its radius and the EOS orbit

normal. (The maximum Doppler rate occurs when e = 90°.) Two tracking scenarios based on a "best

TDRS/ATDRS" criterion are shown in Figure 2.

During normal mission operations, TDRSS/ATDRSS will support the EOS mission with a minimum of one equivalent

single access (SA) channel for communication services. Since there may be as many as three spacecraft in orbit

simultaneously, time sharing of SA resources is likely. Consequently, for TONS-I EOS tracking, during

communication contacts may not necessarily satisfy the "best TDRS/ATDRS" and placement criteria shown in

Figure 2.

To assess the potential sensitivity to occasional missed (lost/unavaila.ble) contacts or nonoptimal (poor geometry)

contacts, several alternative "degraded" scenarios were considered. On the other hand, the option to schedule

occasional TDRSS/ATDRSS multiple access forward link (MAF) tracking contacts to supplement inopportune or

unavailable SA contacts is feasible for EOS. Consequently, other scenarios with a combination of degraded contacts

and supplemental (5-minute) contacts, where appropriate, were also considered. Table 1 lists the assumed set of

scenarios used for analysis.

3.0 COVARIANCE ANALYSIS OF EOS NAVIGATION PERFORMANCE

To evaluate the potential navigation performance for EOS using TONS, an upgraded version of the Sequential Error

Analysis (SEA) program [11,12] was used. The program assumes Extended Kalman F'dter (EKF) processing of the

tracking data and computes the uncertainty in an EOS platform's orbit, time and/or frequency determination as a

function of various error sources, and time from a specified epoch. The following subsections discuss the assumed

tracking model inputs to the SEA program (see Figure 3) and the OD/TD/FD performance results corresponding to

the tracking scenarios defined in Table 1.

3.1 TRACKING MODEL PARAMETERS

Table 2 lists the a priori uncertainties in the basic parameters assumed to be estimated for EOS navigation: three

position, three velocity, clock bias and clock drift (or frequency bias in TONS-I). Uncertainties in various systematic

and random error sources contribute to the overall covariance of the estimated parameters. The lo values of all error

sources included in the analysis for TONS-I are listed in Table 2. Changes or additions pertinent to TONS-II are

listed in an adjacent column. Since the error analysis is linear, the results for any particular systematic contributor

may be scaled up or down to note the impact of values other than those stated here.

3.1.1 Dynamic Model Errors

Errors in force modeling (gravitational harmonics, GM, CD, C_ introduce orbit propagation errors in the interval

between tracking passes. Values in Table 2 for the gravitational harmonics are based on the GEM-T1 model [13,14].

Their contributions were evaluated individually and the composite effect determined based on the root-sum-square

(rss) of errors due to individual harmonics ...... •
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Table 1

EOS Tracking Scenarios With TONS

TONS
Mode

TONS-I

TONS-II

Tracking
Scenario

A1-20
A1-10
A1-5

Tracking
Contacts

,, (5 Mins)

TDRS Scheduling
Criteria

Best Geometry
n n

H

Cl-20 One Pass/Orbit (20 Mlns) Arbitrary Geometry
C2-20 Same Except Two Omitted Each Day - -

C3-20 One Pass/Orbit (20 Mins) Arbitrary Geometry, East Only
C4-20 - - Arbitrary Geometry, West Only

Cl-20+ One Pass/Orbit (20 Mins)+
Selected 5 Mln Contacts

Same Except Two 20 Min Contacts
Omitted Each Day

Continuous Tracking (Except in ZOE)

C2-20+

B1

Arbitrary Geometry
Best Geometry

Some

Best Geometry

3RACKING
CONRGURATION

AND TEST CASE
DEFINITION

MOI_I.
MODEL PARAMETERS

DERNITION

I

i

ORBIT
PARAMETERS:

- USER

,,- TDRS

S*_LU_ I
VISIBIUTY
PROGRAM

11_CK]N0

CRI'IIg_IA

I f t
-GM
- 0RAV, HARM.
-SOLAR RAD.
- DRAG

r

Figure 3:

NOISE I_RORS
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SECUENTIAL ERROR ANALYSIS (SEA) PROGRAM
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E
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The error due to atmospheric drag is modeled as an uncertainty in the drag coefficient, CD. Although CD would likely

be an estimated parameter, a residual effect is assumed to remain and is treated as a consider parameter with la

uncertainty equal to 10% of the assumed nominal value (CD, = 2.2). (While this is extremely conservative, further

scrutiny would not be needed unless drag becomes dominant) The impact of this error is directly proportional to the

atmospheric density (p) and spacecraft area-to-mass ratio (A/m). Computations for p were based on a Harris-Priester

atmospheric density model and elevated solar flux levels in the range of 225-325 x 10z_ watts/M2/Hz to assess worst

case conditions. The A/m algorithm listed in Table 2 was provided by the EOS Project.

Assumed uncertainties in the gravitational constant (GM) and solar pressure coefficient (Ca) are conservative (i.e.,

high). Since their impact tends to be relatively small, more refined values are unnecessary.

3.1.2 Measurement Processing Errors

Errors in updating the estimated parameters with each new measurement arise from errors in the tracking data and

errors in modeling the measurements.

Errors in the tracking data were characterized in terms of equivalent range and range-rate noise uncertainties and

system biases. Random measurement error values listed in Table 2 are representative of scheduled (SSA/MA)

services using the EOS high gain antenna for TONS-I and the proposed ATDRSS S-band navigation beacon service

using an omni-antenna for TONS-II. Although lower random errors would apply if the HGA is available for TONS-

Il, the more conservative assumption was made for analysis.

The la pseudorange bias values represent the composite of a residual, uniformly distributed + 10m bias attributed

to the ground stations, ATDRS and user components. This is also a conservative assumption based on ATDRSS

specifications, [9] although it is not particularly significant for OD accuracy, since it primarily affects TD accuracy.

The range-rate bias error of 0.1 mm/sec (la) was included primarily to observe potential sensitivity, but in any case,

it should be absorbed in the reference oscillator bias estimate.

Frequency drift in the EOS reference oscillator appears as a range-rate error which affects Doppler measurement

accuracy and as a clock bias acceleration error B which affects pseudoranging accuracy. Oscillator drift was defined

as a systematic error with a lo uncertainty of 10_° parts per day, a level which is consistent with USO performance

specified for the TONS and COBE navigation experiments.[4,15] This value is also conservative, since _ can be

calibrated to a few parts in 10 H per day or better and virtually modeled out based on long-term trending of the

frequency bias estimates and/or observation residuals analysis.

Uncertainties in the TDRS orbit contribute directly to the measurement modeling error. The 1_ orbit error assumed

in Table 2 for TONS-I is representative of current TDRS tracking accuracy. The 1_ error for TONS-II is consistent

with the ATDRS tracking goals [8] and the results of recent studies on tracking improvements.[16,17]
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Table 2

Key Tracking Model Parameters for EOS Covariance Analysis

Estimated

Unestimated
Systematic

Errors

(Consider)Parameters

Random
Measurement

Errors

Other

Tracking
Parameters

Parameter

EOS I H,C,L• .. (A Priori)
Orbit H,C,L

EOS I BClock B (A Priori)

Atomospherlc Drag (L_CD) *

Gray. Constant (GM)

Gray. Harmonics
(3o x 30)

Solar Radiation (CR)

Systems Biases I_

"I'DRS Orbit

usa i_
Drift

Range O"R

Range Rats

Parameter

- Filter Tuning:

--User Vel. Process Noise

--Clock Rate Process Noise

- Tracking Contacts

- Data Rate

1 O- Errors
TONS I

1000 m

1 m/sec

N/A

2 x 10"7 parts

10%

0.1 ppm

GEM-T1
Uncertainties

10%

N/A
0.1 mrn/sec

50 m

10-10 ppd

N/A

2 mrn/sec

Value

TONS II

1000 m

1 m/see

1 msec

2 x 10 7 parts

10%

0.1 ppm

GEM-T1
Uncertainties

10%

IOM
0.1 mm/sec

25 m

10-10 ppd

5 m

5 mm//sec

10-9 m2/sec 3

10-6 nsec2/sec 3

See Scenarlos
In Table 1

One/lO sec

• Drag Coefficient (CD) Is assumed to be estimated (by the user navigation algorithm) with a
residual error (&CD) treated here as a consider parameter. (Nomlnal C D =2.2, Area/Mass =
.O01+.0163JSlnSJ, (In m2/Kg) where 0= spacecraft true anomaly from descending node)

e4
u3
bJ

f_

_E

e.
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3.1.3 Filter Tuning Parameters

Filter tuning refers to adjustment of the Kalman filter gains to control the weight given to prior estimates. The

objective is to achieve some balance between uncertainties introduced by new measurements and those caused by

propagating prior estimates with an imperfect dynamical model. The filter process noise variance rates listed in Table

2 were used throughout the analysis and found to give reasonable results. No attempt was made to evaluate the use

of dynamic tuning techniques which attempt to continually optimize parameters (e.g., in response to measurement

residual levels or modeled phenomena).

3.2 OD PERFORMANCE RESULTS

EOS navigation performance based on TONS-I or TONS-II capabilities was evaluated for each of the tracking

scenarios deemed in Table 1 and for both moderate and high atmospheric density levels. Altogether, 20 cases were

considered (see Table 3), and for each the errors in an EOS platform's position, clock bias, and clock drift (or

frequency bias for TONS-I) were computed over 48 hours. A sample of the position error profiles for two cases

provided in Figure 4 shows the lo errors due to individual error contributors and the lo total (RSS) error.

A summary of the OD performance is given for each case in Table 3 in terms of lo errors (peak total and mean

total)." Mean errors in all cases and even peak errors in all but three cases are within the current EOS position

accuracy requirement of 33 meters (lo)." Results for tracking scenario B indicate that TONS-II could also support

the EOS position accuracy goal of 17 meters (lo). With respect to error sources, the sample plots in Figure 4 show

that gravity modeling error is the predominant contributor. Effects of drag model uncertainty are not as significant

but do increase during intervals with missed or poor geometry contacts. However, this sensitivity (as indicated by

the results for tracking scenarios C1-20 and C2-20) is readily mitigated with a few supplemental (5-minute) tracking

contacts (as indicated by the results for scenarios C1-20+ and C2-20+).

3.3 TDIFD PERFORMANCE RESULTS

In addition to EOS orbit determination both TONS-I and II will enable transponder reference frequency determination

(FD) by estimating the USO frequency bias. With the availability of pseudorange data via ATDRSS beacon tracking,

TONS-I/could support EOS time determination by estimating the onboard clock bias. The covarianee analysis also

provided an evaluation of EOS time and frequency determination (TD/FD) performance. Table 3 lists the mean lo

FD errors over 48 hours for each case considered (after settling of initial transients). These results are clearly well

below the current operational requirements for transponder reference frequency uncertainty (+ 700 Hz). Evaluation

of potential TD performance with TONS-I/(tracking scenario B) indicates lo clock bias errors of 100 - 120 nsec

(after settling of initial transients).

The errors listed in Table 3 are the maximum and average over 48 hours (after settling of initial _ients)

of the lo total position errors.

The current EOS position accuracy requirement of 100m (3o) and the goal of 50m (3o) have each been

divided by 3 for performance comparison purposes.
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Table 3

EOS OD/FD Performance Using TONS (via Covariance Analysis)

TONS
Mode

Atmos.

Density
Level *

Moderate

_V

Moderate

High

'V

High

Moderate: 0.2-0.7xl

High: 0.3-1.8

At S-Bond (2106.4 MHz)

Tracking
Scenario

A1-20

10

5

Cl-20

C2-20

Cl-20 +

C2-20 +

C3-20

C6-20

10- OD Error (m) 10- FD Error**
(raN, z)

Mean Peak Mean
i

13

16

20

15

17

13

14

22

24

30

25

29

21

23

33

27

17

16

39

60

94

32

33

29

3O

55

30

B1-Continuous

A1-20

10

5

Cl-20

C2-20

Cl - 2O +

C2-20 +

C3-20

C4-20

B1-Contlnuous

9

15

18

23

16

18

14

14

18

17

0 -12 kg/m 3 (Solar Rux = 225 Watts/m

" " = 325 "

13

24

28

36

32

36

23

25

37

33

14

28

42

66

99

33

34

30

32

5O

51

29

2/Hz)
X

=_..
_o
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Prior to the availability of a TONS-II capability for autonomous onboard updating of the EOS time reference,

conventional TDRSS two-way ranging operations utilizing the USCCS could be employed. Clock corrections would

be determined and uplinked to the EOS time management system at a rate dependent upon the time maintenance

requirement CI'r,t_), the USCCS accuracy (-1 psec), and the time reference oscillator (I'RO) stability. For example,

with a TRO long-term stability of 10-t° parts per day clock updates would be required about every two days for TMAx

= 10 lasec (or - 22 days for TMAX= 100 lasec). Current EOS specifications [2] relax the time maintenance requirement

to 100 psec when updated by ground-based operations, a sacrifice in capability to reduce the ground support impact.

Although a tradeoff between TRO stability and Traxx relaxation might be considered, another altemative is to utilize

TONS-I FD capabilities to reduce the frequency of USCCS operations. This approach is based on calibrating the

clock drift, assuming that the TRO and transponder reference (USO) frequencies can be derived from a common

source. Future TDRSS transponders will likely be configured to accept a standard extemal reference frequency (e.g.,

5 or 10 MHz vs the current 19.056392 MHz). Figure 5a indicates the relevant onboard elements and data interfaces.

The Onboard Navigation System (ONS) would provide a mean offset (]_"f) in the reference oscillator frequency (f_)

over an appropriate averaging interval (T^vc), and the time management system would compute a corresponding

incremental clock correction, (_r/f,)T^v a. Figure 5b illustrates hypothetical clock drift prof'des with and without

FD correction data twice per day. Given the FD performance stated in Table 3 and T^vo = 0.5 day, the corresponding

lt_ uncertainty in the clock updates would be < 1.5 lasec. This level of incremental correction accuracy would be

sufficient to support the 10 psec maintenance requirement with occasional USCCS updates for absolute recalibration.

Alternatively, clock corrections derived from long-term ground-based modeling (similar to the COBE/USO

characterization [18]) could provide even tighter time maintenance accuracy and longer intervals between USCCS

updates. With the eventual availability of TONS-II, however, continuous estimation of both clock bias and drift

would enable time maintenance at the sub-microsecond level.

4.0 SIMULATION ANALYSIS OF EOS NAVIGATION PERFORMANCE

To complement the covariance analysis approach in evaluating TONS for supporting EOS navigation it was decided

to assess particular performance sensitivity concerns through simulation and to compare estimated parameters against

reference or truth data. An upgraded version of GSFC's R&D GTDS program, known as the Navigation Processing

System (NPS) [19, 20] was used for all major simulation functions: ephemeris generation, data simulation, (Kalman)

filter processing, and ephemeris comparisons. An overview of the simulation elements used for EOS OD/FD

performance evaluation is shown in Figure 6. Truth orbits for an EOS platform and two TDRSs were generated and

used in conjunction with a USO model and particular tracking scenarios (as defined in Table 1) to produce simulated

TDRSS one-way forward Doppler data."

Pseudorange tracking data generation and processing capabilities were not available in the current NPS

program, but OD/FD performance evaluations for TONS-II were not significantly affected, since Doppler

tracking data is the most effective aid to OD/FD. The need for pseudorange data is primarily for the time-

determination function (which was not simulated).
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Table 4

Key Tracking Model Parameters for Simulation Analysis

Parameters

USO Bias (parts)

" Drift (ppd)

Drag Model ('°1) **

Grav. Harmonics

41" W

TDRS
4

Ephemeris
171" W

* A Priori Values at Epoch

Truth

(DATASIM)

1 X 10 -12

1 X 10 -l°

0

GEM - T2

(50 x 50)

GEM-9

(4 x 4)

** Drag error modeled In terms of Scalar offset to drag coefficient CD = CDo (1 +Pl)"
(See footnote to Table 2 for other related parameters).

-I-To produce nominal (__ 50 m) or 3 X nominal (__150 m) TDRS ephemeris errors

Model

(FILTER)

1 X 10 -7*

3 x 10 -l°*
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Figure 6: Overview of Navigation Performance Simulation
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Processing of the simulated tracking data is performed by an EKF program which, analogous to user navigation

software, is provided with TDRS orbit data (nontruth) and various tracking model parameters. The estimated

parameters comprise EOS position and velocity states, USO bias and drift states and a drag model parameter (p_).

Error profiles for performance evaluations were derived by comparing truth and estimated parameter data over a

specified time interval.

Three particular issues (missed or poor geometry tracking contacts, TDRSS/ATDRSS ephemeris uncertainty, and drag

estimation capability) were selected for analysis. The following subsections discuss the assumed tracking model

parameters and the performance results.

4.1 TRACKING MODEL PARAMETERS

Initial errors in the EOS orbit were set at the same levels assumed in Table 2 for the covariance analysis. Table 4

lists the a priori offsets in the USO bias and drift parameters assumed to be estimated. The initial offset for 131was

set arbitrarily at 0.5" with the objective of observing estimation convergence characteristics relative to the 10%

residual error assumption made for Co as a consider parameter in the covariance analysis (see Table 2).

For this analysis, only errors in significant unestimated parameters were assumed, specifically errors in gravity

harmonics modeling and user (EOS) knowledge of TDRS orbits. For TDRS orbit error modeling, a non-truth orbit

was derived by reducing the assumed gravity model (4x4 to 2x0) and/or offsetting the epoch state vector as noted

in Table 4. These model parameters were selected to reflect expected TDRS (or ATDRS) tracking performance for

TONS-I (or II) assuming upgraded BRTS (or APLS) capabilities (A 75m - 3a).[17] An off-nominal error model with

degraded TDRS accuracy _ 150m 3a) was used to assess sensitivity in a TONS-I application prior to a BRTS

upgrade or APLS implementation.

Numerical values for other modeled parameters, measurement noise and bias, and drag model parameters (platform

A/m, solar flux level, etc.) were set at the same levels used in the covarianee analysis. Filter tuning was adjusted (via

velocity state noise level) to accomodate cases with degraded TDRS ephemeris accuracy.

4.2 PERFORMANCE RESULTS

EOS navigation processing was simulated for four tracking scenarios assuming the nominal modeling parameters

stated in Table 4. These were repeated for off-nominal TDRS/ATDRS tracking errors to assess performance

sensitivities. Altogether, eight cases were considered (see Table 5) and for each case the errors in platform position,

velocity, and USO frequency bias were computed over 48 hours. Sample plots of the position error profiles (truth-

estimated position vs time) are provided in Figure 7.

A summary of the OD performance results is given in Table 5 in terms of the peak and RMS errors (after settling

of initial transients). The data indicate reasonable overall agreement between the OD errors computed for

corresponding covariance and simulation analysis cases based on TONS-I and TONS-II. However, the

contributions of TDRS ephemeris error at the levels assumed for simulation are clearly dominant over those due to

the gravity modeling error. Determining potential sensitivity to missed or poor geometry tracking contacts and/or

degraded TDRS orbit information was the intent in comparing performance between the selected TONS-I scenarios:

A1-20, CI-20 and C1-20+. As indicated by the results in Table 5, however, there is no clear distinction since each

" This equates to an initial offset of 50% from the truth model where Pl = 0 (i.e., CD = (Ct_. See footnote in

Table 5 for parameter def'mitions.
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Table 5

EOS OD Performance Using TONS (SimuLation Analysis)
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is subject to occasional peak errors under the postulated circumstances. Although the baseline OD requirement (100

m) can be supported, less sensitivity in achievable with more distributed tracking which also alternates between

TDRSs (or ATDRSs) as in scenario B 1.

With respect to atmospheric drag estimation capability, sample plots of the solutions for drag coefficient offset (O_)
from an initial value of 50% are given in Figure 7 for scenarios A1 and B1. Solutions are shown for nominal and

above nominal TDRS ephemeris modeling errors. As the results in Table 5 indicate, solutions for p_ indicate

generally good convergence toward the assumed truth value of zero. Offsets are typically on the order of 0.1 or less

(which is consistent with the 10% Co error assumption used in the covariance analysis). Further analysis of the OD

performance indicates that the peaks in ephemeris errors are also correlated with intervals requiting extended orbit

propagation when the drag model was degraded (i.e., Pl not converged). In practice, Pa typically would not converge

to zero, because of mismodeling in other drag model parameters and aliasing effects in the estimation process due

to other mismodeling (e.g., TDRS/ATDRS ephemeris).

5.0 CONCLUSIONS

The eovariance and simulation results for EOS navigation based on TONS indicate that:

• EOS position accuracy is within 25m (la) using TONS-I with a nominal scheduled tracking contact of

20 minutes/orbit and 14m (1(_) using TONS-II with unscheduled, near continuous beacon tracking.

- The current EOS position accuracy requirement, 33m (lc), could be met by both TONS-I and
TONS-II.*

- The proposed EOS position accuracy goal, 17m (lc), could also be met by TONS-II (and by TONS-I
if more intensive scheduled tracking is provided).

• TONS-I with scheduled service (e.g., 20 mirdorbit) is more sensitive to occasional missed, unavailable, or Ix)or
geometry contacts than is TONS-II with unscheduled beacon service (near continuous).

• The TONS-II TD capability, 0.1 psec (lo), could easily support EOS time reference maintenance requirements
10 )asec relative to UTC).

• Both TONS-I and TONS-II provide a transponder reference frequency determination (USO FD) capability of
better than 0.35 x 10t° parts (lo), equivalent to 0.1 Hz (la) at S-band.

TONS-I FD capabilities could support maintenance of the EOS time standard if its frequency reference (TRO)
and the transponder reference (USO) are derived from a common source. (Incremental corrections to the time

standard based on USO FD would lengthen the time between required timing calibrations with the USCCS.

• The current EOS position accuracy requirement of 100m (3a) and the goal of50m (3(_) have each been divided

by 3 for direct comparison with covariance analysis results.
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